Problem 2.21

One of these is an impossible electrostatic field. Which one?
(a) $\mathbf{E}=k[x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 x z \hat{\mathbf{z}}]$.
(b) $\mathbf{E}=k\left[y^{2} \hat{\mathbf{x}}+\left(2 x y+z^{2}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}\right]$.

Here k is a (nonzero) constant with the appropriate units. For the possible one, find the potential, using the origin as your reference point. Check your answer by computing ∇V. [Hint: You must select a specific path to integrate along. It doesn't matter what path you choose, since the answer is path-independent, but you simply cannot integrate unless you have a definite path in mind.]

Solution

An electrostatic field must satisfy $\nabla \times \mathbf{E}=\mathbf{0}$. Calculate the curls of the given fields and see which is nonzero.

$$
\begin{aligned}
& \nabla \times \mathbf{E}_{a}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
k x y & 2 k y z & 3 k x z
\end{array}\right| \\
&=\left[\frac{\partial}{\partial y}(3 k x z)-\frac{\partial}{\partial z}(2 k y z)\right] \hat{\mathbf{x}}-\left[\frac{\partial}{\partial x}(3 k x z)-\frac{\partial}{\partial z}(k x y)\right] \hat{\mathbf{y}}+\left[\frac{\partial}{\partial x}(2 k y z)-\frac{\partial}{\partial y}(k x y)\right] \hat{\mathbf{z}} \\
&=[(0)-(2 k y)] \hat{\mathbf{x}}-[(3 k z)-(0)] \hat{\mathbf{y}}+[(0)-(k x)] \hat{\mathbf{z}} \\
&=-2 k y \hat{\mathbf{x}}-3 k z \hat{\mathbf{y}}-k x \hat{\mathbf{z}} \\
& \nabla \times \mathbf{E}_{b}=\left[\left.\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
k y^{2} & k\left(2 x y+z^{2}\right) & 2 k y z
\end{array} \right\rvert\,\right. \\
&=\left[\begin{array}{cc}
\left.\frac{\partial}{\partial y}(2 k y z)-k \frac{\partial}{\partial z}\left(2 x y+z^{2}\right)\right] \hat{\mathbf{x}}-\left[\frac{\partial}{\partial x}(2 k y z)-\frac{\partial}{\partial z}\left(k y^{2}\right)\right] \hat{\mathbf{y}}+\left[k \frac{\partial}{\partial x}\left(2 x y+z^{2}\right)-\frac{\partial}{\partial y}\left(k y^{2}\right)\right] \hat{\mathbf{z}} \\
& =[(2 k z)-k(2 z)] \hat{\mathbf{x}}-[(0)-(0)] \hat{\mathbf{y}}+[k(2 y)-(2 k y)] \hat{\mathbf{z}} \\
& =0 \hat{\mathbf{x}}-0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\mathbf{0}
\end{array}\right. \\
&
\end{aligned}
$$

Therefore, the electric field in part (a) is impossible. $\nabla \times \mathbf{E}=\mathbf{0}$ implies the existence of a potential function $-V$ that satisfies

$$
\mathbf{E}=\nabla(-V)=-\nabla V .
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). To solve for V, integrate both sides along a path between two points in space
with position vectors, \mathbf{a} and \mathbf{b}, and use the fundamental theorem for gradients.

$$
\begin{aligned}
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}_{0} & =-\int_{\mathbf{a}}^{\mathbf{b}} \nabla V \cdot d \mathbf{l}_{0} \\
& =-[V(\mathbf{b})-V(\mathbf{a})] \\
& =V(\mathbf{a})-V(\mathbf{b})
\end{aligned}
$$

In this context \mathbf{a} is the position vector for the reference point (taken to be the origin \mathcal{O} here), and \mathbf{b} is the position vector \mathbf{r} for the point we're interested in knowing the electric potential.

$$
\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=V(\mathcal{O})-V(\mathbf{r})
$$

The potential at the reference point is taken to be zero: $V(\mathcal{O})=0$.

$$
\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=-V(\mathbf{r})
$$

Therefore, the potential at $\mathbf{r}=\langle x, y, z\rangle$ is

$$
V(\mathbf{r})=-\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0} .
$$

Determine the electric potential corresponding to the electric field in part (b) by integrating along some convenient path from the origin to the point of interest.

$$
\begin{aligned}
V_{b}(\mathbf{r}) & =-\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E}_{b} \cdot d \mathbf{l}_{0} \\
& =-\int_{\langle 0,0,0\rangle}^{\langle x, y, z\rangle} \mathbf{E}_{b} \cdot d \mathbf{l}_{0} \\
& =-\left(\int_{\langle 0,0,0\rangle}^{\langle x, 0,0\rangle} \mathbf{E}_{b} \cdot d \mathbf{l}_{0}+\int_{\langle x, 0,0\rangle}^{\langle x, y, 0\rangle} \mathbf{E}_{b} \cdot d \mathbf{l}_{0}+\int_{\langle x, y, 0\rangle}^{\langle x, y, z\rangle} \mathbf{E}_{b} \cdot d \mathbf{l}_{0}\right)
\end{aligned}
$$

Parameterize the three line segments.
Segment 1: $\quad x_{0}=s_{0} \quad$ and $\quad y_{0}=0 \quad$ and $\quad z_{0}=0, \quad 0 \leq s_{0} \leq x$
Segment 2: $\quad x_{0}=x$ and $y_{0}=s_{0} \quad$ and $\quad z_{0}=0, \quad 0 \leq s_{0} \leq y$
Segment 3: $\quad x_{0}=x$ and $y_{0}=y \quad$ and $\quad z_{0}=s_{0}, \quad 0 \leq s_{0} \leq z$
Consequently,

$$
\begin{aligned}
V_{b}(\mathbf{r}) & =-\int_{0}^{x} \mathbf{E}_{b}\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{l}_{0}^{\prime}\left(s_{0}\right) d s_{0}-\int_{0}^{y} \mathbf{E}_{b}\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{l}_{0}^{\prime}\left(s_{0}\right) d s_{0}-\int_{0}^{z} \mathbf{E}_{b}\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{l}_{0}^{\prime}\left(s_{0}\right) d s_{0} \\
& =-\int_{0}^{x} \mathbf{E}_{b}\left(s_{0}, 0,0\right) \cdot\langle 1,0,0\rangle d s_{0}-\int_{0}^{y} \mathbf{E}_{b}\left(x, s_{0}, 0\right) \cdot\langle 0,1,0\rangle d s_{0}-\int_{0}^{z} \mathbf{E}_{b}\left(x, y, s_{0}\right) \cdot\langle 0,0,1\rangle d s_{0} .
\end{aligned}
$$

Plug in the electric field, evaluate the integral, and then simplify the result.

$$
\begin{aligned}
V_{b}(\mathbf{r}) & =-\int_{0}^{x}\langle 0,0,0\rangle \cdot\langle 1,0,0\rangle d s_{0}-\int_{0}^{y}\left\langle k s_{0}^{2}, 2 k x s_{0}, 0\right\rangle \cdot\langle 0,1,0\rangle d s_{0}-\int_{0}^{z}\left\langle k y^{2}, k\left(2 x y+s_{0}^{2}\right), 2 k y s_{0}\right\rangle \cdot\langle 0,0,1\rangle d s_{0} \\
& =-\int_{0}^{x}(0) d s_{0}-\int_{0}^{y}\left(2 k x s_{0}\right) d s_{0}-\int_{0}^{z}\left(2 k y s_{0}\right) d s_{0} \\
& =-2 k x \int_{0}^{y} s_{0} d s_{0}-2 k y \int_{0}^{z} s_{0} d s_{0} \\
& =-2 k x\left(\frac{y^{2}}{2}\right)-2 k y\left(\frac{z^{2}}{2}\right) \\
& =-k x y^{2}-k y z^{2}
\end{aligned}
$$

Therefore,

$$
V_{b}(x, y, z)=-k\left(x y^{2}+y z^{2}\right) .
$$

Check this answer by computing the partial derivatives of V_{b}.

$$
\begin{aligned}
& \frac{\partial V_{b}}{\partial x}=\frac{\partial}{\partial x}\left(-k x y^{2}-k y z^{2}\right)=-k y^{2} \\
& \frac{\partial V_{b}}{\partial y}=\frac{\partial}{\partial y}\left(-k x y^{2}-k y z^{2}\right)=-2 k x y-k z^{2} \\
& \frac{\partial V_{b}}{\partial z}=\frac{\partial}{\partial z}\left(-k x y^{2}-k y z^{2}\right)=-2 k y z
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\nabla V_{b} & =\left\langle\frac{\partial V_{b}}{\partial x}, \frac{\partial V_{b}}{\partial y}, \frac{\partial V_{b}}{\partial z}\right\rangle \\
& =\left\langle-k y^{2},-2 k x y-k z^{2},-2 k y z\right\rangle \\
& =-k\left\langle y^{2}, 2 x y+z^{2}, 2 y z\right\rangle \\
& =-\mathbf{E}_{b} .
\end{aligned}
$$

